If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+3x-3=0
a = 10; b = 3; c = -3;
Δ = b2-4ac
Δ = 32-4·10·(-3)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{129}}{2*10}=\frac{-3-\sqrt{129}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{129}}{2*10}=\frac{-3+\sqrt{129}}{20} $
| 19x+6=31x+4x | | 1/2y-12=18 | | 3(2n-8)+16=10 | | |2x-1|-5=6 | | 1/4(8x-12)=15 | | 2/3×5/8x=26 | | 5-y-4y=10 | | 2(4w-6)=10 | | 2/3+t=1/4 | | 10x+5x+12=72 | | 3x-2(x-5=10 | | (n–8)(n+8)=0 | | 3(-6x-2)=-42 | | 3(2x-1)^2(4-x)^2+(2x-1)^3(-2)(4-x)=0 | | 3x+2(-1.5x+2)=-6 | | 2x+20=38 | | 4x×10×=18,13 | | 3x-4+2x+6=32 | | 3y+4(2y+1)-5y-1-5=9 | | X+2(0.5x-5)=-2 | | 21+14=17+18-10t | | -13=r/4+-10 | | 7×(x+8)=7 | | a+1/2a+5+2a=180 | | (3x-10)+(2x+20)+90=180 | | 6(x+2)=-18x+6(x2-3) | | -28+1/2b=11 | | m+32/7=0 | | v/10+30=38 | | 2b2-b=10 | | 5x2-35x+60=0 | | t/2-8=-6 |